
Quasi-periodic solutions for some (2 + 1)-dimensional integrable models generated by the

Jaulent-Miodek hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 989

(http://iopscience.iop.org/0305-4470/34/5/305)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 02/06/2010 at 09:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 989–1004 www.iop.org/Journals/ja PII: S0305-4470(01)14251-4

Quasi-periodic solutions for some (2 + 1)-dimensional
integrable models generated by the Jaulent–Miodek
hierarchy

Xianguo Geng1,2, Cewen Cao2 and H H Dai3

1 CCAST (World Laboratory), PO Box 8730, Beijing 100080, People’s Republic of China
2 Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People’s
Republic of China
3 Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong
Kong, People’s Republic of China

Received 24 May 2000, in final form 21 November 2000

Abstract
Some (2 + 1)-dimensional integrable models, including the modified
Kadomtsev–Petviashvili equation, generated by the Jaulent–Miodek hierarchy
are investigated. With the help of the Jaulent–Miodek eigenvalue problem,
these (2 + 1)-dimensional integrable models are separated into compatible
Hamiltonian systems of ordinary differential equations. Using the generating
function flow method, the involutivity and the functional independence of the
integrals are proved. The Abel–Jacobi coordinates are introduced, from which
the quasi-periodic solutions for these (2+1)-dimensional integrable models are
derived by resorting to the Riemann theta functions.

PACS number: 0230J

1. Introduction

The study of soliton hierarchies is one of the most prominent subjects in the field of nonlinear
science. A fairly satisfactory understanding has been obtained for the (1 + 1)-dimensional
integrable models over recent decades. Some important explicit solutions have been found,
including the N -soliton solution, the quasi-periodic (or finite-band, or algebro-geometric)
solution, and the polar expansion solution. Quite a few systematic methods have been
developed, such as the inverse scattering transformation [1–3], the bilinear transformation
methods of Hirota [4], the dressing method [3], the Bäcklund and the Darboux transformations
[5, 6], the algebraic curve method [7], the nonlinearization approach of eigenvalue problems or
Lax pairs [8–10], and so on. The situation is not so good for the (2 + 1)-dimensional integrable
models, which are more complicated and more difficult. They refuse to yield to quite a few
usual methods of analysis, though they are successful in the 1 + 1 case. Nevertheless, some
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progress has been made. For example, much has been done for the Kadomtsev–Peiviashvili
(KP) equation [1, 3]

wt = 1
4 (wxx + 3w2)x + 3

4∂
−1
x wyy (1.1)

whose N -soliton solution, the quasi-periodic solution and some other explicit solutions are
found through elaborate methods. Unfortunately, one usually encounters great difficulties in
trying to extend these methods to other examples because of the strong characteristics of the
(2 + 1)-dimensional models.

Based on the nonlinearization of the Lax pair and its adjoint, Konopelchenko et al
[11] and Cheng and Li [12] found independently that some special solutions of the KP
equation (1.1) can be obtained simply from the compatible solutions of the first two members
of the Ablowitz, Kaup, Newell and Segur (AKNS) family, one of the well known (1 + 1)-
dimensional soliton hierarchies. These two members are known as the coupled nonlinear
Schrödinger equation,

uy = uxx − 2u2v vy = −vxx + 2uv2 (1.2)

and the coupled modified Korteweg–de Vries equation,

ut = uxxx − 6uuxv vt = vxxx − 6uvvx. (1.3)

Specifically, let (u(x, y, t), v(x, y, t)) be a compatible solution of (1.2) and (1.3), then
w(x, y, t) = −2uv solves (1.1). This discovery seems to be one of the points favouring a
breakthrough in tackling the difficult 2 + 1 models. Quite recently, we succeeded in calculating
the well known algebro-geometric solution of the KP equation (1.1) [13]:

w(x, y, t) = 2
∂2

∂x2
ln θ(�1x +�2y +�3t +D) + w0 (1.4)

using a newly designed scheme resorting to the above decomposition, which enables us
to obtain the special quasi-periodic solutions of other 2 + 1 models such as the modified
Kadomtsev–Peiviashvili (mKP) equation [14], the (2 + 1)-dimensional Caudrey–Dodd–
Gibbon–Kotera–Sawada (2 + 1 CDGKS) equation [15], the (2 + 1)-dimensional modified
Korteweg–de Vries (2 + 1 mKdV) equation [16], and a discrete model, the special 2 + 1 Toda
equation [17]:

mKP:

wt = 1
4 (wxx − 2w3)x + 3

4

(
∂−1
x wyy − 2wx∂

−1
x wy

)
(1.5)

2 + 1 CDGKS:

wt = − 1
36 (wxxxxx + 15wwxxx + 15wxwxx + 45w2wx)

+ 5
36

(
∂−1
x wyy + 2wx∂

−1
x wy + wxxy + 3wwy

)
(1.6)

2 + 1 mKdV:

wt = 1
4 (wxx − 2w3)x + 3

4

(
∂−1
x wyy − 2wx∂

−1
x wy − 6wwy

)
(1.7)

2 + 1 special Toda:

∂2wn

∂x∂y
= exp(wn+1 − wn) ∂

∂x
(wn+1 + wn)− exp(wn − wn−1)

∂

∂x
(wn + wn−1). (1.8)



Quasi-periodic solutions for some (2 + 1)D integrable models 991

Table 1.

2 + 1 1 + 1 U

KP AKNS

(
1
2λ u

v − 1
2λ

)
w = −2uv

mKP Chen–Lee–Liu

( 1
2 (λ− uv) λu

v − 1
2 (λ− uv)

)
w = uv

2 + 1 CDGKS mKdV

(
u λ

1 −u
)

w = −2u2

2 + 1 mKdV Kaup–Newell

( − 1
2λ λu

v 1
2λ

)
w = uv

2 + 1 special Toda Toda
1

a

(
0 a2

−1 λ− b
)

w = ∂−1
x b

The special solution of each 2 + 1 model is constructed in a similar way by the compatible
solution of two members of the associated (1 + 1)-dimensional soliton hierarchy, which is the
isospectral class of some 2 × 2 eigenvalue problem

χx = Uχ (1.9)

or

Eχ = Uχ (1.10)

in the discrete case, whereE is the shift operator: Ef (n) = f (n+ 1). We list the key elements
in table 1.

As soon as we enter the domain of (1+1)-dimensional integrable models, quite a few ready
tools come to our rescue. First, the special solutions of the (1 + 1)-dimensional equations are
further decomposed into those of compatible Hamiltonian systems, which are obtained through
the nonlinearization of the eigenvalue problem (1.9) or (1.10). Second, the algebraic curve
method is introduced and the Abel–Jacobi coordinates are defined, by which various flows
are straightened out so that they can be integrated by quadratures. Third, the Riemann–Jacobi
inversion is used to yield the final expression of the explicit solution by means of the Riemann
theta function, similar to (1.4). In short, our new scheme is composed of three steps:

(a) decomposition;
(b) straightening out;
(c) inversion.

Here, we are going to study the special quasi-periodic solutions of some (2 + 1)-dimensional
integrable models generated by the Jaulent–Miodek hierarchy, a well known (1+1)-dimensional
integrable model, associated with the eigenvalue problem [18]

χx = U(u, λ)χ U(u, λ) =
(

0 1
u + λv + λ2 0

)
χ =

(
χ(1)

χ(2)

)
(1.11)

where u and v are two potentials, λ is a constant spectral parameter, u = (u, v)T . The key step
is the following decomposition, which only depends on the two non-trivial soliton equations
in the Jaulent–Miodek hierarchy, but does not depend on their Lax pairs.
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Theorem 1. Let (u, v) be a compatible solution of the first two Jaulent–Miodek equations:

uy = −vxxx + 4uvx + 2uxv

vy = −4ux + 6vvx
(1.12)

and

ut = −uxxx + 6uux − 6uvvx − 3
2uxv

2 + 9
2vxvxx + 3

2vvxxx

vt = −vxxx + 6(uv)x − 15
2 v

2vx.
(1.13)

Thenw(x, y, t) = v(x, y, t) solves any one (2 + 1)-dimensional equation in the following list:

wt = − (wxx − 2w3
)
x
− 3

2

(
wx∂

−1
x wy + wwy

)
(1.14)

wt = 1
2

(
wxx − 2w3

)
x

+ 3
2

(− 1
4∂

−1
x wyy + wwy

)
(1.15)

wt = − 1
4

(
wxx − 2w3

)
x
− 3

4

(
1
4∂

−1
x wyy + wx∂

−1
x wy

)
(1.16)

wt = 2
(
wxx − 2w3

)
x
− 3

4

(
∂−1
x wyy − 2wx∂

−1
x wy − 6wwy

)
(1.17)

where ∂−1
x denotes an inverse operator of ∂x = ∂/∂x with the condition ∂x∂−1

x = ∂−1
x ∂x = 1,

which can be defined as (∂−1
x f )(x) = ∫ x

−∞ f (x
′) dx ′ under the decaying condition at infinity.

Proof. From (1.12) we have

u = 3
4w

2 − 1
4∂

−1
x wy

1
4∂

−1
x wyy = (

wxx − 2w3
)
x

+ wx∂
−1
x wy + 2wwy.

Substituting into the second equation of (1.13), we have (1.14). Equations (1.15)–(1.17) are
obtained through elementary calculations. �

Note that (1.16) becomes the mKP equation (1.5) [19] after changing the scales: t → −t ,
y → − 1

2y.
The Jaulent–Miodek eigenvalue problem (1.11) is a little more complicated to treat than

those mentioned above. On the other hand, it can govern more (2 + 1)-dimensional equations
such as (1.14)–(1.17). This is a good balance.

The outline of the present paper is as follows. In section 2, a class of (2 + 1)-dimensional
nonlinear evolution equations is proposed and decomposed into the (1+1)-dimensional Jaulent–
Miodek equations. In sections 3 and 4, the finite-dimensional Hamiltonian system related to the
Jaulent–Miodek hierarchy and their involutive systems of conserved integrals are studied. The
class of (2 + 1)-dimensional nonlinear evolution equations is further separated into compatible
Hamiltonian systems of ordinary differential equations. In section 5, resorting to the elliptic
and quasi-Abel–Jacobi coordinates, the independence of two involutive systems of conserved
integrals is proved. In sections 6 and 7, the Abel–Jacobi coordinates are introduced to straighten
out the associated flows. The Riemann–Jacobi inversion is discussed, from which the quasi-
periodic solutions for the class of (2+1)-dimensional nonlinear evolution equations, including
(1.14)–(1.17), are obtained by using the Riemann theta functions.
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2. A class of (2 + 1)-dimensional evolution equations and their decomposition

In this section, we shall propose a class of (2 + 1)-dimensional nonlinear evolution equations
and their decomposition. To this end, we introduce recursive equations for two functions u
and v:

B−1 = 2 B0 = −v

Bm+1 = 1
16

m∑
j=0

(
2Bj−1Bm−1−j,xx − 4uBj−1Bm−1−j − Bj−1,xBm−1−j,x

)

− 1
4

m∑
j=0

BjBm−j − 1
4v

m+1∑
j=0

Bj−1Bm−j m � 0.

(2.1)

It is easy to see that Bm are uniquely determined by (2.1) and the first few members are

B1 = −u + 3
4v

2 B2 = 1
4

(−vxx + 6uv − 5
2v

3
)

B3 = − 1
4uxx + 3

4u
2 + 5

8vvxx + 5
16v

2
x − 15

8 uv
2 + 35

64v
4.

(2.2)

Let us consider the transformation

u = 3
4w

2 − 1
4∂

−1
x wy v = w (2.3)

which defines a map

u = f (w) u = (u, v)T . (2.4)

Now we introduce a class of (2 + 1)-dimensional nonlinear evolution equations

∂w

∂tm
= ∂Bm
∂x

m � 1 (2.5)

with

Bm = 4Bm(u)|u=f (w).

The first three (2 + 1)-dimensional nonlinear evolution equations in (2.5) are as follows:

wt1 = wy

wt2 = −wxxx + 6w2wx − 3
2wwy − 3

2wx∂
−1
x wy (2.6)

wt3 = 1
4wxxy + wwxxx + 1

2wxwxx − 7w3wx + 3
4w

2wy + 3
8wy∂

−1
x wy + 3

2wwx∂
−1
x wy (2.7)

where equation (2.6) is the same as (1.14) when t2 = t .
In what follows, we first construct the hierarchy of Jaulent–Miodek equations. Then the

decomposition of the (2 + 1)-dimensional evolution equations (2.5) is given. Differentiating
(2.1) with respect to x, we have

4∂xBm+1 = 1
2

m∑
j=0

Bm−1−j (∂3
x − 2u∂x − 2∂xu)Bj−1

−2
m∑
j=0

Bm−j ∂xBj −
m+1∑
j=0

Bm−j (∂xv + v∂x)Bj−1

= 2B−1∂xBm+1 − 2Bm∂xB0 − Bm(∂xv + v∂x)B−1

+ 1
2

m∑
j=0

Bm−1−j [(∂3
x − 2u∂x − 2∂xu)Bj−1 − 2(∂xv + v∂x)Bj − 4∂xBj+1] (2.8)



994 X Geng et al

which implies

m∑
j=0

Bm−1−j [(∂3
x − 2u∂x − 2∂xu)Bj−1 − 2(∂xv + v∂x)Bj − 4∂xBj+1] = 0. (2.9)

By induction we have from (2.9) that

(∂3
x − 2u∂x − 2∂xu)Bj−1 − 2(∂xv + v∂x)Bj − 4∂xBj+1 = 0. (2.10)

Equation (2.10) can be written as

Kgj−1 = Jgj Jg−1 = 0 gj = (Bj , Bj+1)
T j � 0 (2.11)

with two skew-symmetric operators

K =
(
∂3
x − 2u∂x − 2∂xu 0

0 4∂x

)
J =

(
2(∂xv + v∂x) 4∂x

4∂x 0

)
.

It is easy to calculate that

g−1 =
(

2
−v

)
g0 =

( −v
−u + 3

4v
2

)
g1 =

( −u + 3
4v

2

1
4 (−vxx + 6uv − 5

2v
3)

)
.

Therefore, the Jaulent–Miodek hierarchy can be written as [20]

utm = Xm m � 0 (2.12)

with the Jaulent–Miodek vector field Xj = Kgj−1 = Jgj . The first two non-trivial systems
are (1.12) and (1.13) with y = t1, t = t2. Then it is easy to see that if (u, v) is a solution
of (1.12) and (2.12) with m � 2, the function w(x, y, tm) = v determined by the second
expression of (2.3) is a solution of the (2 + 1)-dimensional evolution equations (2.5).

Let us introduce the generating function of {gk}:

gλ = g−1 +
∞∑
k=0

gkλ
−k−1 (2.13)

which satisfies

(K − λJ )gλ = 0. (2.14)

Assume that

V (u, λ) = σ(u, λ)[γ ] =
(

γ (1)x −2γ (1)

γ (1)xx − 2(u + λv + λ2)γ (1) −γ (1)x

)
(2.15)

then we have

Vx − [U,V ] = U ′
∗{(K − λJ )γ }. (2.16)

Resorting to (2.16), (K−λJ )γ = 0 implies (∂/∂x) det σ(γ ) = 0. Thus we obtain from (2.13)
that

det σ [gλ] = −16λ2. (2.17)
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3. The finite-dimensional Hamiltonian systems

In this section, we shall discuss the finite-dimensional Hamiltonian systems associated with
the eigenvalue problem (1.11) with the help of the nonlinearization approach. Assume that λk
and χ = (pk, qk)

T (1 � k � N ), areN distinct eigenvalues and the associated eigenfunctions
for the eigenvalue problem (1.11). Then we have

σ(u, λk)[∇λk] = 2

(
pkqk −p2

k

q2
k −pkqk

)
≡ εk (3.1)

∂εk

∂x
= [U(u, λk), εk] (3.2)

(K − λkJ )∇λk = 0 (3.3)

where

∇λk = (p2
k , λkp

2
k )
T . (3.4)

We now introduce the Bargmann constraint

g0 =
N∑
k=1

∇λk (3.5)

or

u =
(
u

v

)
=
( 3

4 〈p, p〉2 − 〈(p,p〉
−〈p, p〉

)
≡ h(p, q) (3.6)

which plays a central role in the process of nonlinearization for the eigenvalue problem (1.11).
The original motivation for this kind of constraint comes from the scattering expression of the
reflectionless potential or the Bargmann potential [21], which was summarized in the general
form of (3.5) in [8]. Indeed, the Bargmann constraint (3.5) is exactly the scattering expression
of the reflectionless potentials for the eigenvalue problem (1.11) (see [22]). Constraint (3.6)
nonlinearizes N copies of the eigenvalue problem (1.11)(

pk

qk

)
x

= U(u, λk)

(
pk

qk

)
(k = 1, . . . , N) (3.7)

into a finite-dimensional Hamiltonian system(
p

q

)
x

= I∇H0 =
(

−∂H0/∂q

∂H0/∂p

)
(3.8)

where 〈·, ·〉 denotes the canonical inner product in R
N , ( = diag(λ1, . . . , λN), p =

(p1, . . . , pN)
T , q = (q1, . . . , qN)

T ,

H0 = − 1
2 〈q, q〉 + 1

8 〈p, p〉3 − 1
2 〈p, p〉〈(p,p〉 + 1

2 〈(2p, p〉.
LetQλ(ξ, η) = 〈(λI −()−1ξ, η〉. Consider

Gλ =
(

2
〈p, p〉

)
+

N∑
j=1

∇λj
λ− λj =

(
2 +Qλ(p, p)
λQλ(p, p)

)
(3.9)

which satisfies (K − λJ )Gλ = 0 by a direct calculation. Resorting to (2.15) and (3.8), we
have

Vλ = σ(λ)[Gλ] =
(

0 −4
αλ 0

)
+ 2

(
Qλ(p, q) −Qλ(p, p)
Qλ(q, q) −Qλ(p, q)

)
(3.10)
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where

αλ = −〈p, p〉2 + 2〈(p,p〉 + 2λ〈p, p〉 − 4λ2.

Here the following formulae are used:

Qλ((ξ, η) = λQλ(ξ, η)− 〈ξ, η〉
Qλ((

2ξ, η) = λ2Qλ(ξ, η)− λ〈ξ, η〉 − 〈(ξ, η〉.
Note that Fλ = det Vλ is invariant under the action of the x-flow. Based on the identity

Qλ(ξ, η) =
∞∑
m=0

λ−m−1〈(mξ, η〉

the generating function of integrals of motion for the finite-dimensional Hamiltonian system
(3.8) can be written as

Fλ = det Vλ = (4 + 2Qλ(p, p))(αλ + 2Qλ(q, q))− 4Q2
λ(p, q)

= −16λ2 +
∞∑
m=0

λ−m−1Fm (3.11)

with

F0 = −16H0

Fm = −8〈(m+2p, p〉 + 8〈(mq, q〉 + 4〈p, p〉〈(m+1p, p〉
+ 2(−〈p, p〉2 + 2〈(p,p〉)〈(mp, p〉

+ 4
m∑
j=1

(〈(j−1p, p〉〈(m−j q, q〉 − 〈(j−1p, q〉〈(m−jp, q〉) m � 1.

(3.12)

ConsiderFλ as a Hamiltonian in the symplectic space (R2N, dp∧dq). A direct calculation
gives the canonical equations of the Fλ-flow:

d

dτλ

(
pk

qk

)
= I∇kFλ =

( −∂Fλ/∂qk
∂Fλ/∂pk

)
= W(λ, λk)

(
pk

qk

)
(3.13)

where

W(λ,µ) = 4

λ− µVλ +4λ(µ)σ3 σ3 =
(

0 0
1 0

)

4λ(µ) = −4(λ + µ− 〈p, p〉)V 12
λ = 8(2 +Qλ(p, p))(λ + µ− 〈p, p〉).

As a consequence of (3.13) the matrix εk defined by (3.1) satisfies

dεk
dτλ

= [W(λ, λk), εk]. (3.14)

Theorem 2. The Lax matrix Vµ satisfies the Lax equation alone the τλ-flow:

dVµ
dτλ

= [W(λ,µ), Vµ]. (3.15)

Besides,

{Fµ, Fλ} = 0 ∀λ µ ∈ C (3.16)

{Fj , Fk} = 0 ∀j k = 0, 1, 2, . . . . (3.17)
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Proof. Note the identities

Qλ((ξ, η) = λQλ(ξ, η)− 〈ξ, η〉

〈(µI −()−1(λI −()−1ξ, η〉 = 1

µ− λ(Qλ(ξ, η)−Qµ(ξ, η)).

A direct calculation shows that (3.15) holds. As a consequence of the Lax equation (3.15) we
obtain

0 = d

dτλ
det Vµ = dFµ

dτλ
= {Fµ, Fλ}.

Substituting the expansion (3.11) into (3.16) gives (3.17) by comparing the same power of
λ,µ. �

4. Other integrals {Hk} and soliton equations

In order to establish the direct relation between finite-dimensional Hamiltonian systems and
the Jaulent–Miodek field Xk , we define a new set of integrals {Hk} recursively by

H0 = 1
4F0 H1 = 1

4F1 H2 = 1
4F2

Hm+3 = 1
4Fm+3 + 1

16

∑
i+j=m
i,j�0

HiHj m = 0, 1, 2, . . . (4.1)

which is put in the equivalent form

− 1

16λ2
Fλ = (1 − 1

8Hλ)
2 (4.2)

with the help of the generating function

Hλ =
∞∑
k=0

Hkλ
−k−3. (4.3)

The involutivity of {Hk} is based on the equality

{Hµ,Hλ} = 1

λµ
√
FλFµ

{Fµ, Fλ} = 0.

Acting with J−1K upon the Bargmann constraint (3.5) k times and noting that ker J =
{71g−1 + 72g−2|g−2 = (0, 1)T ,∀71, 72} gives

N∑
j=1

λkj∇λj = gk + c2gk−2 + c3gk−3 + · · · + ck+1g−1 + ζk+2g−2 k � 1 (4.4)

in view of (2.11) and (3.3), where cj and ζk+2 are constants of integration. Resorting to the
structures of g0 and g1, we find that c2 = 0 as k = 1. By using (3.9) and (4.4), we arrive at

Gλ = g−1 +
N∑
j=1

∇λj
λ− λj = g−1 +

∞∑
k=0

λ−k−1
N∑
j=1

λkj∇λj

= cλgλ +
∞∑
k=1

λ−k−1ζk+2g−2 (4.5)
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with

cλ = 1 +
∞∑
k=0

ck+3λ
−k−3. (4.6)

Using (3.10) and (2.15), we have

Vλ = σ(λ)

[
cλgλ +

∞∑
k=1

λ−k−1ζk+2g−2

]
= σ(λ) [cλgλ] (4.7)

Fλ = −16λ2c2
λ (4.8)

because of (2.17). By comparing (4.2) and (4.8) we obtain

cλ = 1 − 1
8Hλ ck+3 = − 1

8Hk (k = 0, 1, 2, . . .). (4.9)

Denote the variables of theHλ-flow andHk-flow by tλ and tk , respectively. By the Leibniz
rule of the Poisson bracket we obtain

1

4λ2
{ψ,Fλ} = (

1 − 1
8Hλ

) {ψ,Hλ}
for any smooth function ψ due to (4.2). Thus

d

dtλ
= 1

4λ2(1 − 1
8Hλ)

d

dτλ
= 1

4λ2cλ

d

dτλ
. (4.10)

For u = h(p, q), we have

du

dτλ
=

 3〈p, p〉

〈
p,

dp
dτλ

〉
− 2

〈
(p,

dp
dτλ

〉
−2

〈
p,

dp
dτλ

〉

 = 4JGλ (4.11)

du

dtλ
= 1

4λ2cλ

du

dτλ
= 1

λ2cλ
JGλ = 1

λ2
Jgλ =

∞∑
k=0

Jgkλ
−k−3 =

∞∑
k=0

Xkλ
−k−3 (4.12)

by (3.13), (3.8), (3.9), (4.5) and (2.13). On the other hand, we have

du

dtλ
= h∗

{
d

dtλ

(
p

q

)}
= h∗(I∇Hλ) =

∞∑
k=0

h∗(I∇Hk)λ−k−3. (4.13)

Thus we obtain the following assertions.

Theorem 3.

h∗(I∇Hk) = Xk. (4.14)

Theorem 4. Let (p(x, tk), q(x, tk))T be a compatible solution of the H0- and Hk-flow. Then
u(x, tk) = h(p, q) solves the kth Jaulent–Miodek equation

utk = Xk(u). (4.15)

Theorem 5. Let (p(x, y, tm), q(x, y, tm))T be a compatible solution of the H0-,H1-,Hm-flow
(m � 2) (

p

q

)
x

= I∇H0

(
p

q

)
y

= I∇H1

(
p

q

)
tm

= I∇Hm.

Then w(x, y, tm) = −〈p, p〉 solves the (2 + 1)-dimensional evolution equations (2.5).
Especially, for m = 2 and t = t2, w(x, y, t) = −〈p, p〉 solves the (2 + 1)-dimensional
evolution equations (1.14)–(1.17).
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Proof. Let ht00 and htmm be the solution operators of the initial-value problems of the Hamiltonian
systems (R2N, dp∧dq,H0) and (R2N, dp∧dq,Hm), respectively. Then h

tj
j and htmm commute

[23]. Put the solution in two ways(
p

q

)
= hx0h

y

1

{
htmm

(
p0

q0

)}
= hx0h

tm
m

{
h
y

1

(
p0

q0

)}
.

We see that u = h(p, q) solves uy = X1, utm = Xm simultaneously. Therefore, the function
w(x, y, tm) = −〈p, p〉 solves (2.5). �

5. Elliptic coordinates and functional independence of integrals

It is easy to see that each one of Fλ, V 12
λ and V 21

λ as a rational function of λ, has simple poles
at λj s (1 � j � N ) since the coefficients of (λ− λj )2 is zero in Fλ. We have

Fλ = −V 12
λ V

21
λ − (V 11

λ )
2

= −4Q2
λ(p, q) + 4Qλ(p, p)Qλ(q, q) + 8Qλ(q, q) + 2αλQλ(p, p) + 4αλ

= −16
b(λ)

a(λ)
= −16

R(λ)

a2(λ)
(5.1)

V 12
λ = −4 − 2Qλ(p, p) = −4

n(λ)

a(λ)
(5.2)

where

a(λ) =
N∏
k=1

(λ− λk) b(λ) =
N+2∏
k=1

(λ− λk+N)

R(λ) = a(λ)b(λ) =
2N+2∏
j=1

(λ− λj ) n(λ) =
N∏
j=1

(λ− µj).
(5.3)

From (5.2) and (5.1) we have

w = v = −〈p, p〉 = 2
N∑
j=1

(µj − λj ) (5.4)

V 11
µk

= 4

√
R(µk)

a(µk)
. (5.5)

Substitute µ = µk in the 12th component of (4.15):

d

dτλ
V 12
µ = 8

λ− µ(V
11
λ V

12
µ − V 11

µ V
12
λ ). (5.6)

After some calculations we obtain from (5.6) and (5.2) that

1

32
√
R(µk)

dµk
dτλ

= n(λ)

a(λ)(λ− µk)n′(µk)
N∑
k=1

µ
N−j
k

32
√
R(µk)

dµk
dτλ

= λN−j

a(λ)
(j = 1, 2, . . . , N)

(5.7)
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where the interpolation formula for polynomials is used. µk is called the elliptic coordinate of
the finite-dimensional Hamiltonian system (3.8). Equation (5.7) suggests the consideration of
the hyperelliptic curve <, defined by the affine equation

ξ 2 − (32)2R(λ) = 0 (5.8)

with genus g = N and the usual holomorphic differentials

ω̃j = λN−j dλ

32
√
R(λ)

j = 1, . . . , N. (5.9)

Denote ρ(µk) = (
λ = µk, ξ = 32

√
R(µk)

) ∈ <. Let P0 ∈ < be fixed. Define the quasi-
Abel–Jacobi coordinates by

φ̃j =
N∑
k=1

∫ ρ(µk)

P0

ω̃j j = 1, . . . , N. (5.10)

Then the second expression of (5.7) is put in the form

dφ̃j
dτλ

= λN−j

a(λ)
. (5.11)

It is easy to prove that the coefficient of the expansion [13]

1

(1 − λ1λ−1) · · · (1 − λNλ−1)
=

∞∑
k=0

Akλ
−k (5.12)

can be determined recursively by

A0 = 1 A1 = s1

Ak = 1

k


sk +

∑
i+j=k
i,j�1

siAj


 (5.13)

where sk = λk1 + · · · + λkN . Denote the variable of Fk-flow by τk . Comparing the coefficients
of λ−k−1 in the expansion of (5.11) gives

dφ̃j
dτk

= {φ̃j , Fk} = Ak−j+1 (5.14)

with supplementary definition A−k = 0(k = 1, 2, . . .). Thus

(
dφ̃

dτ0
,

dφ̃

dτ1
, . . . ,

dφ̃

dτN−1

)
=




1 A1 A2 · · · AN−1

1 A1 · · · AN−2

. . .
. . .

...

. . . A1

1




(5.15)

where φ̃ = (φ̃1, . . . , φ̃N )
T .

Theorem 6.

(a) {F0, F1, . . . , FN−1} are functionally independent;
(b) {H0, H1, . . . , HN−1} are functionally independent.
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Proof.

(a) By [23], we need only prove the linear independence of the differentials
dF0, dF1, . . . , dFN−1. Suppose

∑N−1
k=0 γk dFk = 0. Let H = φ̃j in the formula [23]

{H,F } = ω2(I dF, I dH).

We have
N−1∑
k=0

γk{φ̃j , Fk} = 0 j = 1, . . . , N.

Thus γ0 = · · · = γN−1 = 0 because of (5.15).
(b) Noticing (4.1) and (4.9) we obtain



dF0

dF1

dF2

...

dFN−1


 = 4




1 0 0 · · · 0
1 0 · · · 0

. . .
. . .

...

∗ . . . 0
1







dH0

dH1

dH2

...

dHN−1


. (5.16)

Thus dH0, . . . , dHN−1 are also linearly independent. �

Corollary. The finite-dimensional Hamiltonian system (3.8) is completely integrable in the
Liouville sense.

6. Abel–Jacobi coordinates

Let a1, b1, . . . , aN , bN be the canonical basis of cycles on the hyperelliptic curve <, and

C = (Ajk)
−1
N×N Ajk =

∫
ak

ω̃j . (6.1)

Define the normalized holomorphic differential by

ωs =
N∑
j=1

Csj ω̃j ω = (ω1, . . . , ωN)
T = Cω̃. (6.2)

Then ∫
ak

ωs = δsk

∫
bk

ωs = Bsk (6.3)

where the matrix B = (Bsk) is symmetric with positive-definite imaginary part and is used to
define the Riemannian theta function of < [24, 25]:

θ(ζ ) =
∑
z∈ZN

expπ
√−1(〈Bz, z〉 + 2〈ζ, z〉) ζ ∈ C

N.

The Abel map A(P ) and the Abel–Jacobi coordinates are defined as

A(P ) =
∫ P

P0

ω A
(∑

nkPk

)
=
∑

nkA(Pk) (6.4)

φ = A
(

N∑
k=1

ρ(µk)

)
=

N∑
k=1

∫ ρ(µk)

P0

ω = Cφ̃. (6.5)
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Let Sk = λk1 + · · · + λk2N+2 and R̂(λ−1) = ∏2N+2
j=1 (1 − λjλ

−1). Then the coefficients in (see
[13])

1√
R̂(λ−1)

=
∞∑
k=0

(kλ
−k (6.6)

are determined recursively by

(0 = 1 (1 = 1
2S1

(k = 1

2k


Sk +

∑
i+j=k
i,j�1

Si(j


. (6.7)

From (5.1) and (4.2) we obtain

λa(λ)(1 − 1
8Hλ) =

√
R(λ). (6.8)

Let Ck be the kth column vector of the matrix C. By (6.5), (5.11), (4.10), (6.8) and the lemma
we have

dφ

dτλ
= C

dφ̃

dτλ
= λN

a(λ)
(C1λ

−1 + · · · + CNλ
−N)

dφ

dtλ
= 1

4λ2(1 − 1
8Hλ)

dφ

dτλ
= λN−1

4
√
R(λ)

(C1λ
−1 + · · · + CNλ

−N)

= 1

4λ2

√
R̂(λ−1)

(C1λ
−1 + · · · + CNλ

−N)

= 1
4

∞∑
k=0

(kλ
−k−2

N∑
j=1

Cjλ
−j =

∞∑
k=0

�kλ
−k−3

(6.9)

with the constants

�0 = 1
4(0C1 �1 = 1

4 ((1C1 +(0C2)

�k = 1
4 ((kC1 + · · · +(1Ck +(0Ck+1) k � N − 1

�k = 1
4 ((kC1 + · · · +(k−N+1CN) N � k.

(6.10)

Therefore, we have the following fact.

Theorem 7. Straightening out of the flow

dφ

dtλ
=

∞∑
k=0

�kλ
−k−3 (6.11)

dφ

dtk
= �k (k = 0, 1, 2, . . .). (6.12)

Note. From theorem 7, we arrive at the evolution picture of the 2 + 1 flows

φ = φ0 +�0x +�1y +�ktk k � 2. (6.13)
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7. The Riemann–Jacobi inversion and explicit solutions

Since degR = 2N+2, on< there are two infinite points∞1 and∞2, which are not branch points
of<. According to the Riemann theorem [24, 25], there exists a constant vectorM (the Riemann
constant) ∈ C

N such that θ(A(ρ(λ))− φ −M) has exactly N zeros at λ = µ1, . . . , µN . And
we have the inversion formula

N∑
j=1

µj = I1(<)−
2∑
s=1

Res
λ=∞s

λ d ln θ(A (ρ(λ))− φ −M) (7.1)

with the constant

I1(<) =
N∑
j=1

∫
aj

λωj .

For the same λ, there are two points on different sheets of the Riemann surface <:

ρ(λ) =
(
λ, 32

√
R(λ)

)
ρ−(λ) =

(
λ,−32

√
R(λ)

)
.

Under the local coordinate z = λ−1 at infinity, the hyperelliptic curve <, ξ 2 − (32)2R(λ) = 0,
in the neighbourhood of infinity is expressed as ξ̂ 2 − (32)2R̂(z) = 0 with ξ̂ = zN+1ξ , and(
z, 32(−1)s−1

√
R(z)

)
z=0 = (

0, 32(−1)s−1
)
, s = 1, 2. Then we have

λ−(N+1)
√
R(λ) = (−1)−s−1

√
R̂(z).

By (6.2) and (5.9) we obtain

ω = Cω̃ = (−1)s dz

32
√
R̂(z)

(C1 + zC2 + · · · + zN−1CN). (7.2)

With the help of (6.9) and (6.4) we obtain

ω = 1
8 (−1)s

∞∑
k=0

�kz
k dz (7.3)

A(ρ(z−1)) = −ηs − 1
8 (−1)s−1

∞∑
k=0

1

k + 1
�kz

k+1 (7.4)

with

ηs =
∫ P0

∞s

ω.

Since the theta function is an even function, then we have

θ(A(ρ(z−1))− φ −M) = θ(φ +M + ηs) + 1
8z(−1)s−1 ∂

∂x
θ(φ +M + ηs) + O(z2). (7.5)

From (7.1) and (7.5) we arrive at
N∑
j=1

µj = I1 − 1

8

2∑
s=1

(−1)s−1 ∂

∂x
ln θ(φ +M + ηs)

= I1 +
1

8

∂

∂x
ln
θ(φ +M + η2)

θ(φ +M + η1)
. (7.6)
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Therefore, we obtain by (5.4) and (6.13) that quasi-periodic solutions for the (2+1)-dimensional
evolution equations (2.5)

w(x, y, tm) = 1

4

∂

∂x
ln
θ(�0x +�1y +�mtm + ϒ2)

θ(�0x +�1y +�mtm + ϒ1)
+ 70 m � 2 (7.7)

with the constants

ϒ1 = φ0 +M + η1 ϒ2 = φ0 +M + η2 70 = 2I1 − 2
N∑
j=1

λj .

For m = 2, t2 = t the function (7.7) is the solution of the (2 + 1)-dimensional evolution
equations (1.14)–(1.17).
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